
1. Introduction
The Tibetan Plateau is the world's largest and highest plateau resulting from the collision between the Indian 
and Eurasian plates that was initiated ∼50 Ma ago (Molnar & Tapponnier, 1975; Rowley, 1996). The intensive 
collision, subduction and related deep dynamic processes create significant crustal shortening and uplifting of the 
Plateau, accompanied with eastward extrusion of plateau materials (Harrison et al., 1992; Yin & Harrison, 2000). 
Due to the strong blockage of the rigid Yangtze Craton (YC) in the east, southeastern Tibet (SET) serves as one 
of the most important channels for the escape of plateau materials (Cook & Royden, 2008). All these tectonic 

Abstract Since the continental collision between the Indian and Eurasian plates began about 50 Ma ago, 
southeastern Tibet (SET) has undergone complex tectonic deformation. In this study, we investigate fine scale 
structural features of the crustal and upper mantle depths (<250 km) beneath SET, which hold important clues 
to understanding the dynamic processes related to this collision. A 3D shear velocity model is constructed 
through jointly inverting Rayleigh wave phase velocity and teleseismic body wave data from more than 650 
stations. Our 3D model identifies three independent low-velocity zones (LVZs) in the mid-lower crust with 
unprecedented details. More specifically, we observe a prominent LVZ beneath the North Chuan-Dian Block, 
which is well separated from another LVZ beneath the Tengchong volcano in the south. This LVZ beneath 
the volcano represents a focused magma reservoir in the crust whose origin is potentially linked to the mantle 
upwelling associated with the eastward subduction of the Indian plate. The third LVZ, observed around the 
Xiaojiang Fault, likely represents a separated and mechanically weak layer in the mid-lower crust due to the 
combined effects of regional crustal thickening under the southeastward plateau expansion, mantle upwelling, 
and shear heating of strike-slip faults. In the upper mantle, we observe strong velocity reductions both in 
localized areas beneath the Tibetan Plateau and the broad region south of 26°N. These low velocity anomalies 
are sitting above high velocity anomalies at deeper depths, suggesting their association with lithospheric 
thickening and delamination processes.

Plain Language Summary Southeastern Tibet (SET) has undergone complex geological evolution 
due to the plate collision. To better understand the related dynamic processes, we present a high-resolution 3D 
S-wave velocity model from the earth surface to the depth of 250 km by using surface wave and body wave 
data. Our model shows three independent crustal low-velocity zones (LVZs). Especially, the one beneath the 
Tibetan Plateau is seen to be well separated from the one beneath the Tengchong volcano which represents 
the hot magma upwelling related to the eastward subduction of the Indian plate. In addition, another LVZ 
around the Xiaojiang Fault probably represents a separated and mechanically weak layer that is attributed to 
the regional crustal thickening under the southeastward plateau expansion, mantle upwelling, and shear heating 
of strike-slip faults. In the upper mantle, we observe strong velocity reductions both in localized areas beneath 
the Tibetan Plateau and the broad region south of 26°N. Many of these low velocity anomalies are sitting above 
high velocity anomalies at deeper depths, suggesting their origin of lithospheric thickening and delamination 
processes.
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deformation and material transport processes have been imprinted in the crust and upper mantle depths; thus, its 
fine structure holds important clues to the understanding of the deformation mechanism of the plateau.

Two end-member models have been proposed to explain the growth of SET. These include (a) the rigid block 
extrusion model, in which the lithosphere extrudes along major strike-slip faults (Tapponnier et al., 1982, 2001), 
and (b) the middle and lower crustal channel flow model, in which weak crustal material flows viscously driven 
by lateral gravity gradient (Clark & Royden, 2000; Royden et al., 1997, 2008).

Various evidence exists to support both models. For example, GPS measurements reveal the entire SET is rotating 
clock-wisely around the Eastern Himalayan Syntaxis (EHS) through significant strike-slip motions along large 
fracture zones (e.g., Q. Wang, Zhang, et al., 2001; M. Wang & Shen, 2020; P. Z. Zhang et al., 2004). As the 
northern and eastern boundaries of the Chuan-Dian Block, the sinistral strike-slip Xianshuihe Fault (XSHF) and 
Xiaojiang Fault (XJF) are the most active two with slip rates of ∼10–11 and ∼7 mm/yr, respectively (Z.-K. Shen 
et al., 2005). The Lijiang–Xiaojinghe Fault (LXF), the largest fault within the Chuan-Dian Block, have a ∼3 mm/
yr sinistral slip and a ∼1–2 mm/yr thrust slip (Hao et al., 2016; Z.-K. Shen et al., 2005). This indicates the strong 
interaction between rigid crustal blocks at shallow depths.

However, previous geophysical studies also find strong signatures for the existence of crustal channel flow at 
depth. For example, magnetotelluric images identify two high-conductivity channels in the middle and lower 
crust around the center of the Emeishan Large Igneous Province (ELIP) (Bai et al., 2010; X. Li et al., 2020). 
Lg-wave Q tomography reveals a low-Q zone in the deep crust extending from the Tibetan Plateau to the south-
east, as well as an isolated low-Q zone located in the XJF (L.-F. Zhao et al., 2013). Terrestrial heat flow data 
of continental China show high values (>80 mW/m 2) at the SET (Hu et al., 2000; Jiang et al., 2019). Surface 
wave and body wave tomography also show significant low-velocity layers in the middle and lower crust (e.g., 
X. Bao, Song, & Li, 2015; M. Chen et al., 2014; Z. Huang et al., 2019; C. Y. Wang, Chan, & Mooney, 2003;  
Y. Yang et al., 2012; Y. Yang et al., 2020; Yao et al., 2008; Z. Zhang et al., 2020). The combination of the above 
geophysical signatures strongly suggests the existence of partial melt or low-viscosity mechanically weak zones 
in the middle and lower crust. On the other hand, relatively isolated and localized geophysical anomalies in the 
crust challenge the widespread and uniform channel flow model in SET, which leads to a growing consensus that 
the rigid block extrusion and channel flow models might work together to control the lithospheric deformation 
and material transport in the region (e.g., X. Bao, Sun, et al., 2015; Q. Y. Liu et al., 2014; Qiao et al., 2018;  
Y. Yang et al., 2020).

Nevertheless, differences in data and methodology used in previous studies have resulted in significant differ-
ences in resolved features, hindering the complete understanding on the connectivity of the detailed crustal flow 
patterns. For example, X. Bao, Sun, et al. (2015) suggest two parallel flow channels exist around the EHS with 
one from North Chuan-Dian Block (NCDB) to the Tengchong volcano and the other bypassing the ELIP and 
then turning southwest across the Red River Fault (RRF). M. Li et al. (2016) observe similar features in the north 
but suggest these two separated low-velocity channels probably merge again south of the ELIP. However, the 
more recent studies with broader and denser array coverage compared to the early generation models, such as  
Y. Yang et al. (2020), Z. Zhang et al. (2020) and Y. Liu, Yao, et al. (2021), all suggest that the crustal flow from 
the Tibetan Plateau is likely blocked by high velocity materials beneath the ELIP and therefore cannot flow 
further to the southeast. Therefore, the spatial distribution of crustal low-velocity zones (LVZs) and how they 
relate to major strike-slip faults at regional scales are still controversial, which is crucial for understanding mate-
rial escape in the southeastern margin of the Tibetan Plateau and its extension. High-resolution regional geologi-
cal and geophysical observations are necessary to provide further constraints on these processes.

Apart from crustal flows, the SET might also host possible channels for the extrusion of asthenosphere materials 
(M. Liu et al., 2004). Body wave traveltime tomography reveals extensive low-velocity anomalies in the upper-
most mantle around the YC, which are interpreted as the southeastward mantle flow from the Tibetan Plateau 
(Z. Huang et al., 2015; Lei & Zhao, 2016). However, recent geochemical studies of Cenozoic potassic igneous 
rocks (B. Chen et al., 2017; Lu et al., 2015) as well as geophysical studies from reflected body waves (Feng 
et al., 2022), receiver functions (Xu et al., 2018; R. Zhang, Wu, et al., 2017) and teleseismic body wave travel-
time tomography (Z. Huang et al., 2019) argue for an alternative mechanism of lithospheric delamination. They 
propose that the strong continental collision may lead to the thickening of the lithosphere and form higher-density 
lithosphere compared to the surrounding asthenosphere, promoting large-scale lithospheric delamination and 
mantle upwelling (Houseman et al., 1981; Schott & Schmeling, 1998). Moreover, the southern Yunnan region 
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has an east-west extensional dynamical background since the Late Miocene 
(G. Wang et al., 2008). Slab dehydration, breakup or mantle convection asso-
ciated with the eastward subduction and rollback of the Indian plate beneath 
the Burma arc may also control the dynamic evolution of the SET (Guo 
et al., 2015; H. Y. Lee et al., 2016; Ni et  al., 1989; Rao & Kalpna, 2005; 
Richards et  al.,  2007; C. Y. Wang et  al.,  2013). Geochemical studies of 
exposed mantle rocks and hydrothermal fluids indicate an important contri-
bution of deep-source mantle dynamics processes to the expansion and uplift 
of the SET (B. Chen et al., 2017; M. Zhang et al., 2021). These processes 
will lead to different velocity features in the upper mantle. In this case, high 
resolution geophysical imaging results covering both crust and upper mantle 
depths are crucial to revealing the geometric relationships among the upper 
mantle low-velocity region, crustal channel flow, and surface fracture zones 
to explore possible crust-mantle interactions and geodynamic processes.

In this study, by taking advantage of the dense seismic arrays covering a 
broad region of the SET and their complex fault systems, we employ the 
ambient noise tomography (ANT) and teleseismic two-plane-wave tomogra-
phy (TPWT) to obtain a broad period band of Rayleigh wave phase velocity 
data. We jointly invert these phase velocities and the teleseismic body-wave 
waveforms to further improve our constraints on the seismic discontinuities 
including the sedimentary bottom and Moho depths. Our 3D shear-wave 
velocity model shows unprecedented resolution compared to previous ones, 
offering new insights into the tectonic processes and intraplate volcanisms 
of the SET.

2. Data and Method
We collect continuous three-component seismic data from 303 broadband 
stations deployed in the western Sichuan region from October 2006 to July 
2009 (T1 array; Q. Y. Liu et  al.,  2014) and also from 350 stations of the 
ChinArray-Himalaya Phase I project operating from May 2011 to December 
2013 (X1 array; ChinArray, 2006). Both ambient noise and teleseismic data 
from the two arrays are used (Figure 1). Since the horizontal components 
of seismometers at some stations were misaligned during installation, we 

correct the azimuth of the two horizontal components according to the sensor orientations determined by Zeng 
et al. (2021) prior to data processing. The deviations of azimuthal angles are given in the supplementary material 
as Table S1 in Supporting Information S1.

2.1. Ambient Noise Tomography

We obtain Rayleigh wave phase velocity maps at periods of 5–50 s by performing ANT, and we briefly describe 
the data processing procedures below.

Following Bensen et al. (2007), we process the ambient noise data recorded on the vertical components from the 
selected stations and compute the cross-correlation functions (CCFs) among all available station pairs. To do 
that, we first decimate the continuous data from 20 Hz (for both arrays) to 1 Hz and cut them into one-day-long 
segments. For each daily segment, we remove the mean, the trend, the instrument response, and bandpass filter 
it at a period band of 3–100 s. We then apply a running-absolute-mean method in the time domain and spec-
trum whitening in the frequency domain to remove strong spurious signals such as earthquakes and to broaden 
the bandwidths, respectively. To improve the signal-to-noise ratios (SNRs) of the Rayleigh wave signals, we 
first linearly stack daily CCFs for each 5  days without overlapping, and then further stack the 5-day CCFs 
using a time-frequency domain phase-weighted stacking (tf-PWS) method (G. Li et  al.,  2018; Schimmel & 
Gallart, 2007). The nonlinear tf-PWS method has been proven to be very efficient in suppressing noise while 
retaining the dispersive characteristics of stacked waveforms (G. Li et al., 2018). Figure 2 shows some examples 

Figure 1. Main geological units and distribution of T1 (blue triangles) 
and X1 (black triangles) array. The yellow triangle denotes the Tengchong 
volcano zone. The green dashed line delineates the inner zone of ELIP. The 
white dashed lines delineate main geological units and the red solid lines 
represent faults (SGB, Songpan-Ganzi Block; QB, Qiangtang Block; YC, 
Yangtze Craton; CaB, Cathaysia Block; ICB, Indo-China Block; YMTB, 
Yunnan-Myanmar-Thailand Block; NCDB, North Chuan-Dian Block; SCDB, 
South Chuan-Dian Block; XSHF, Xianshuihe Fault; LMSF, Longmenshan 
Fault; ANHF, Anninghe Fault; ZMHF, Zemuhe Fault; XJF, Xiaojiang 
Fault; CTF, Chuxiong-Tonghai Fault; MSF, Mule-Shizong Fault; LXF, 
Lijiang-Xiaojinhe Fault; JSJF, Jinshajiang Fault; NJF, Nujiang Fault; ZDF, 
Zhongdian Fault; RRF, Red River Fault; LTF, Litang Fault; SCB, Sichuan 
Basin; CXB, Chuxiong Basin; LP-SMB, Lanping-Simao Basin).
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of the vertical-component CCFs (ZZ) filtered at different period bands, which display clear move-outs of surface 
waves across the study region. Then, we adopt an automatic Frequency-Time Analysis method (FTAN) (Levshin 
& Ritzwoller,  2001) to measure Rayleigh wave phase velocity dispersion curves from all stacked CCFs. For 
quality control, we only retain measurements with SNRs greater than 10 and interstation distance longer than 
1.5 wavelengths (Luo et al., 2015). Here, the SNR is defined as the ratio of the maximum amplitude of signal 
windows within a velocity range of 2–5 km/s to the root mean square of the trailing noise window of same length 
to the signal window. We then invert the obtained dispersion measurements for phase velocity maps at periods of 
5–50 s using a ray-theory-based method of Barmin et al. (2001). In the inversion, we parameterize the study area 
using a 0.25° × 0.25° grid. To remove the spurious inter-station dispersion measurements, we abandon those data 
with their phase travel time misfits larger than 6 s in the initial run of tomography, and then redo the tomography. 
Figure 3 demonstrates the constructed phase velocity maps at selected periods of 8, 20, 30, and 40 s from ANT. 
The relatively regular array geometry and large number of stations result in extremely dense ray path density 
covering a broad region of SET across different periods (see Figure S1 in Supporting Information S1).

2.2. Teleseismic Two-Plane-Wave Tomography

We further extract Rayleigh wave phase velocities at the intermediate/long period range (30–140 s) from tele-
seismic data and employ the teleseismic TPWT method based on a finite frequency theory (Forsyth & Li, 2005;  

Figure 2. Vertical-component cross-correlation functions of T1 (top row) and X1 (bottom row) array at period bands of 5–10, 10–20, and 20–50 s.
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Yang & Forsyth, 2006b) to construct phase velocity maps. The method of TPWT uses the interferences of two 
plane waves to simulate a complex surface wave wavefield resulting from each teleseismic event to account for 
multipathing and off-great-circle propagations of teleseismic surface waves. It employs 2-D Born approximation 
sensitivity kernels to represent the sensitivities of surface waves to velocity heterogeneities. The details of this 
method are described in Yang and Forsyth (2006a, 2006b) and we here only briefly describe the data processing 
procedures.

We first screen all the teleseismic events with Ms > 5.5 and epicenter distances of 30°–120° that occurred during 
the array deployment time based on the USGS catalog (https://earthquake.usgs.gov/earthquakes/search/). We 
isolate teleseismic waveforms from continuous seismic data using a 7,200 s long window starting from the event 
origin time. Only teleseismic events with SNR greater than 10 are retained for further analysis. A total of 416 
high-quality events covering a broad azimuthal range are used for TPWT with their spatial distribution shown 
in Figure 4a. Figure 4b shows teleseismic waveforms from one example of the retained earthquakes, with clear 
surface wave energy traveling through the dense array. Both the phases and amplitudes of Rayleigh waves of 

Figure 3. Phase velocity maps at different periods from ambient noise tomography.
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the selected teleseismic events are measured through the FTAN method, and they are inputted to the TWPT to 
construct Rayleigh wave phase velocity maps at periods of 30–140 s (Figure 5). Same as the ANT, we parameter-
ize the study region using a 0.25° × 0.25° grid.

To provide a quantitative assessment of resultant phase velocity maps, we conduct a series of checkerboard tests 
for both ANT and TPWT. We design a checkerboard velocity model with ±8% amplitude anomalies relative to 
the average phase velocities of resulting phase velocity maps from field data. For ANT, the sizes of the anomalies 
are set to 0.5° × 0.5° for periods of 8, 20, 30, and 40 s (Figure S2 in Supporting Information S1). For TPWT, 
the sizes of the anomalies are set to be slightly larger, 1.5° × 1.5° throughout the periods (Figure S3 in Support-
ing Information S1). The recovered velocity features from our checkerboard resolution tests are summarized in 
Figure S2 and S3 in Supporting Information S1. In general, the test results show that the input anomalies are 
recovered well for almost all our study areas thanks to unprecedently dense station coverage. Based on these tests, 
we are confident that our model resolutions reach ∼50 km for most of the crustal part, while the model resolution 
degrades with depth due to the broadening of the surface wave sensitivities at longer periods. The nearly complete 
recovery of the 1.5° × 1.5° sized anomalies at the intermediate to long period range (60–120 s) indicate that our 
model resolution at the lithospheric scale is less than 150 km.

The phase velocities at the overlapping periods between the two tomography methods are very consistent with 
each other with an average difference smaller than 4%. Figure S4 in Supporting Information S1 shows one exam-
ple of the difference at 40 s period. Similar to W. Shen et al. (2016), we calculate the weighted average of the 
Rayleigh wave phase velocities from ANT and TPWT at the overlapping periods of 30–50 s where the weight 
applied to ANT changes linearly from 1 to 0 with periods. Finally, we obtain 5–140 s Rayleigh wave  phase velocity 
maps and extract local dispersion curves at each station location, which are then combined with station-dependent 
body-wave waveform data to jointly invert for Vs structures beneath each station.

2.3. Teleseismic Body-Wave Data

When a teleseismic P wave encounters the Moho, a P-to-S conversion is generated at the interface. Due to the 
nearly vertical incidence of P wave, the Z component waveforms received at the surface show only apparent direct 
P waves. However, in the R component, in addition to the direct P wave, it also shows a relatively weak P-to-S 
converted wave from the Moho. The same thing happens when a P wave encounters the sediment-bedrock bound-
ary, which generates an additional P-to-S converted wave at the sediment base. With large velocity impendence, 

Figure 4. (a) Distribution of earthquakes (blue dots) used for teleseismic two-plane-wave tomography. The red triangle 
represents the center of stations. (b) Teleseismic waveforms with the source location indicated by the red star in (a).
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this P-to-S conversion is strong enough to interfere with the direct P wave in the R component, delaying the arrival 
time of apparent P wave. The time delays are period-dependent and can be used to invert for the structure of the 
sedimentary layer (Y. Bao & Niu, 2017). Besides, the multiples from the sedimentary layer of stronger energy 
can also mask or interference with the P-to-S conversion from the Moho, making it difficult to  separate from 
each other. To avoid this complexity, in this study, we employ the cross-convolution method (Bodin et al., 2014;  
G. Li, Niu, et al., 2019; Menke & Levin, 2003) to invert the entire Z and R component waveforms for the subsur-
face interfaces and velocity structure. The basic theory relies on the following two equations:

𝑍𝑍obs(𝑡𝑡) ∗ 𝑟𝑟pred(𝑡𝑡𝑡 𝑡𝑡) = 𝑠𝑠(𝑡𝑡) ∗ 𝑧𝑧(𝑡𝑡) ∗ 𝐼𝐼(𝑡𝑡) ∗ 𝑟𝑟pred(𝑡𝑡𝑡 𝑡𝑡) (1)

𝑅𝑅obs(𝑡𝑡) ∗ 𝑧𝑧pred(𝑡𝑡𝑡 𝑡𝑡) = 𝑠𝑠(𝑡𝑡) ∗ 𝑟𝑟(𝑡𝑡) ∗ 𝐼𝐼(𝑡𝑡) ∗ 𝑧𝑧pred(𝑡𝑡𝑡 𝑡𝑡) (2)

where Zobs(t) and Robs(t) represent the observed vertical and radial components of teleseismic body waves, z(t) 
and r(t) are the vertical and radial component Green's functions of the structure below the station, s(t) and I(t) are 

Figure 5. Phase velocity maps at different periods from teleseismic two-plane-wave tomography.
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the seismic source function and the instrumental response function, and zpred(t,m) and rpred(t, m) are the predicted 
vertical and radial component Green's functions of the sampled model m. When the sampled model m is the same 
as the real velocity structure below the station, that is, zpred(t, m) = z(t) and rpred(t, m) = r(t), the two convolution 
waveforms in the above equation are also equal.

Since the convolution operation is linear and the body wave Green's function of the shallow structure is almost 
independent of the epicenter distance for teleseismic events between 30° and 90° (G. Li, Niu, et al., 2019), we 
stack the body-wave waveforms recorded at each station to improve the SNR of the waveforms, which also 
reduces the number of waveforms to be fitted in the inversion. Following the data processing procedure of G. Li, 
Niu, et al. (2019) and G. Li et al. (2021), we select 1,180 teleseismic events with Ms > 5.5 and epicenter distance 
of 30°–90° that occurred during the observation period. Based on the source and station locations, we rotate the 
two horizontal components (E and N) to obtain the R-component waveforms. We predict the arrival time of the 
direct P wave based on the AK135 model (Kennett et al., 1995) and then use the maximum amplitude around 
the  predicted arrival of the Z component to normalize the Z and R components simultaneously. If the polarity of 
the teleseismic P wave is negative, we reverse it by multiplying the Z and R component waveforms with minus 
one. For events with SNR larger than 10, we align their waveforms according to the moments of maximum ampli-
tudes and then stack them together as illustrated in Figure 6. Here the SNR is defined as the ratio of the maximum 
amplitude of the body-wave waveform to the root mean square of the noise window, which is 60–10 s before the 
arrival of the direct P wave. Finally, the stacked waveforms with a time spanning of 5 s before and 10 s after the 
maximum amplitude are used to calculate the misfit function in the joint inversion. Figure 6 shows one example 
of teleseismic waveforms recorded by station X1.53207, whose location is marked in Figure 1.

2.4. Joint Inversion

Rayleigh wave phase velocities and teleseismic body-wave waveforms have complementary sensitivities to seis-
mic structures and jointly inverting them can reduce the trade-off between absolute S wave velocities and depths 

Figure 6. Z-component (c) and R-component (d) waveforms from all teleseismic events recorded at station X1.53207 with 
the stacked waveforms shown in (a) and (b), respectively.
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of discontinuities (G. Li, Niu, et al., 2019). In this study, we employ a Markov Chain Monte Carlo inversion 
method implemented with a delayed rejection and adaptive Metropolis algorithm (Haario et al., 2006) to guide 
the model selection. We adopt the two-stage strategy of G. Li, Niu, et al. (2019) to sample the model space. In the 
first burn-in stage, 160,000 models are sampled from the initial search range following a randomly uniform distri-
bution, where the posterior probability distributions of the model parameters are estimated and then used as a 
prior for the subsequent sampling. In the second stage, a total of 120,000 models are constructed and the posterior 
probability distribution is updated every 40,000 iterations. Finally, 5,000 independent models are further selected 
from all accepted models in Markov Chain and those independent models are used to calculate the maximum 
probability model.

Similar to G. Li, Niu, et al. (2019), the misfit function is defined as

𝑀𝑀joint (𝑚𝑚) =
1

𝜎𝜎2
1
𝑁𝑁

∑

(

𝑃𝑃𝑃𝑃pred(𝑚𝑚) − 𝑃𝑃𝑃𝑃obs

𝜎𝜎𝑃𝑃𝑃𝑃

)2

+
1

𝜎𝜎2
2

𝜑𝜑(𝑚𝑚) (3)

𝜑𝜑(𝑚𝑚) = 1 −
∫

𝑇𝑇2

𝑇𝑇1

{

𝑍𝑍obs(𝑡𝑡) ∗ 𝑟𝑟pred(𝑡𝑡𝑡 𝑚𝑚)
}

⋅

{

𝑅𝑅obs(𝑡𝑡) ∗ 𝑧𝑧pred(𝑡𝑡𝑡 𝑚𝑚)
}

√

∫
𝑇𝑇2

𝑇𝑇1
|𝑍𝑍obs(𝑡𝑡) ∗ 𝑟𝑟pred(𝑡𝑡𝑡 𝑚𝑚)|

2
𝑑𝑑𝑡𝑡 ⋅

√

∫
𝑇𝑇2

𝑇𝑇1
|𝑅𝑅obs(𝑡𝑡) ∗ 𝑧𝑧pred(𝑡𝑡𝑡 𝑚𝑚)|

2
𝑑𝑑𝑡𝑡

 (4)

where PHpred(m) represents the predicted phase velocity of the sampled model m, PHobs represents the observed 
phase velocity, σPH is the phase velocity uncertainty, N is the number of periods, φ(m) is the misfit function of 
the body-wave waveform, T1 and T2 are the time windows of the body-wave waveform, and σ1 and σ2 are the 
uncertainties of the two data sets. Following Bodin et al. (2012), we also take the uncertainties of σ1 and σ2 as 
unknown parameters in our inversion. During the forward calculation, we use the Computer Programs in Seis-
mology (Herrmann, 2013) to calculate Rayleigh wave phase velocities and adopt the propagator matrix method 
(Haskell, 1962; Thomson, 1950) to synthesize the Green's function of body waves.

Our 1D velocity profile extends from the surface down to 410 km depth below the station and is represented 
by three major layers, that is, a sedimentary layer, a crustal layer, and a mantle layer. We use four parameters 
to represent the sediment layer, including the Vs at the top and bottom of the sediment layer, the layer thickness 
and the associated Vp/Vs ratio. The crustal layer is characterized by six parameters with one for the crustal 
thickness and five B-spline coefficients modeling the variations of Vs in the crust. We use a total of eight 
B-splines to describe the Vs structure of the upper mantle extending from the Moho (W. Wang et al., 2017) to 
410 km depth. Considering the limited sensitivity of our data to Vs structures at depths beyond 250 km, we 
reduce the model space for the last three B-splines that are mainly sensitive to Vs at great depths. The detailed 
model space for all parameters is shown in Table 1. During the inversion, we scale Vp and density from Vs 
following different empirical relationships depending on the layer type. In the sedimentary layer, Vp is scaled 
by Vs using the separate parameter of Vp/Vs, and the density is scaled from Vp following the relationship of 

Model parameters Search range Reference model

Sediment thickness 0–12 km /

Vs at the top of the sediment layer 0–3 km/s Bassin et al. (2000)

Vs at the bottom of the sediment layer 0–3 km/s Bassin et al. (2000)

Vp/Vs of the sediment layer 1.8–3 /

Crust thickness ±10 km W. Wang et al. (2017)

5 B-splines of the crust (1–5) ±15% FWEA18 model (Tao 
et al., 2018)8 B-splines of the upper mantle (1–5) ±15%

(6) ±8%

(7–8) ±2%

Uncertainties (σ1, σ2) 10 −3–10 −1 /

Table 1 
Search Ranges of Model Parameters
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𝐴𝐴 𝐴𝐴 = 1.74𝑉𝑉
1∕4
𝑝𝑝  (Gardner et al., 1974). In the crust, Vp and density are scaled from Vs following Brocher's law 

(Brocher, 2005):

𝑉𝑉p = 0.941 + 2.095𝑉𝑉s − 0.821𝑉𝑉s
2 + 0.268𝑉𝑉s

3 − 0.025𝑉𝑉s
4 (5)

𝜌𝜌 = 1.661𝑉𝑉p − 0.472𝑉𝑉p
2 + 0.067𝑉𝑉p

3 − 0.0043𝑉𝑉p
4 + 0.000106𝑉𝑉p

5 (6)

In the upper mantle, at depths shallower than 200  km, we scale Vp to Vs by a constant relationship of Vp/
Vs = 1.79 following the AK135 model (Kennett et al., 1995) and scale density to Vp using the Birch's law of 
ρ = (Vp + 2.4)/3.125 (Birch, 1961). For depths deeper than 200 km, we scale Vp and density using the derived 
relationships of Vp/Vs = 1.85 and ρ = 0.327Vp + 0.705 based on the PREM (Dziewonski & Anderson, 1981).

3. Results
By jointly inverting the phase velocities and teleseismic body waveforms, we obtain the 1D S-wave velocity 
model from surface down to 410 km depth below each station (Figure 7). We assemble the 1D velocity models 
beneath all stations to obtain a 3D Vs model for the SET.

The inclusion of teleseismic body-wave waveforms in the inversion improves the constraints on the sediment 
thickness and Moho depths as demonstrated by the tight posterior distributions. However, limited by the smooth 

Figure 7. Posterior density function (PDF) of the Vs (black dashed line: the mean of all acceptable models), histograms of sediment and crust thickness (red solid 
line: the reference value from W. Wang et al. (2017); red dashed lines: the corresponding uncertainty), as well as the fitting of Rayleigh wave phase velocities (error 
bars: the observed phase velocities; red lines: the theoretical values calculated from all acceptable models) and convolution waveforms (blue line: the cross convolution 
of Zobs * rpred calculated from the mean model; red line: that of Robs * zpred) for four stations located in the North Chuan-Dian Block (a), the Sichuan Basin (b), the 
Emeishan Large Igneous Province (c), and the Indo-China Block (d).
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nature of the B-spline functions, only the arrival and amplitude of main phases in the convolution waveforms can 
be fitted. Figure 7 shows the inversion results of 1D shear-wave structures beneath four stations located in the 
NCDB, Sichuan Basin (SCB), ELIP, and Indo-China Block (ICB), respectively. Strong variations of crustal and 
lithospheric structures can be observed through the four locations. For example, prominent LVZs are observed in 
the mid-lower crust beneath the station at NCDB (Figure 7a); thick sediments are observed beneath the station at 
SCB (Figure 7b); a high-velocity upper crust is observed beneath the station at ELIP (Figure 7c); and a significant 
low-velocity upper mantle (60–80 km) is seen beneath the station at ICB (Figure 7d).

To assess how the inclusion of teleseismic body-wave waveforms improve the inversion result, we conduct 
another set of 1D inversion solely using Rayleigh wave phase velocity data. The inversion results for the same 
points shown in Figure 7 are summarized in Figure S5 in Supporting Information S1. In general, the resultant 
1D models from the new inversion are very similar to those from the joint inversion at the lithospheric scale. 
However, significant differences exist on the discontinuity depths, such as sedimentary thickness and Moho 
depth, with a much larger and sometimes biased probability distributions for those without using teleseismic 
body-wave waveforms. For example, the new result from a point at NCDB region (Figure S5a in Supporting 
Information S1) shows a mean Moho depth of 57 km, which is much shallower compared to those from the joint 
inversion and from the receiver function result (∼62 km) in the region. Another point at the SCB (Figure S5b in 
Supporting Information S1) shows that the sediment thickness is totally underestimated (only 2–3 km) in the new 
inversion where our joint inversion gives a value of ∼10 km that is more consistent with the sonic well log data 
(M. Wang et al., 2016). The differences in the interface depth also results in slight changes of Vs above/below 
these depths due to the tradeoffs between the isotropic parameters and discontinuity depths. Including teleseismic 
body-wave waveforms helps reduce this tradeoff.

In addition, we also calculate the vertical gradients of the Vs models in the upper mantle and approximate the 
depth of the maximum negative gradient as the lithosphere and asthenosphere boundary (LAB) (Figure S6 in 
Supporting Information S1). To retrieve the sediment thickness, the Moho depth and LAB, we further perform 
the interpolation-based inversion method of Niu et al. (2007) to get smoother interfaces from all measurements. 
The details of this method are described in Appendix A. Figure 8 summaries the regional variations of sediment 
thickness, Moho depth and LAB from this study. We also extract several horizontal slices at different depths and 
vertical cross sections through the main geological units to show the main features of our 3D model (Figures 9 
and 10).

At 5–10 km depth of the upper crust (Figures 9a and 9b), low velocity anomalies are observed beneath various 
sedimentary basins, such as SCB and Lanping-Simao Basin (LP-SMB), as well as along the major fault zones, 
such as the LXF, the XJF, the Chuxiong-Tonghai Fault, the Mule-Shizong Fault, and the Nujiang Fault. Inter-
estingly, the SCB tends to be separated into two distinct domains with the northern SCB characterized by more 
significant velocity reductions compared to the southern one. This difference corresponds to a thicker sedimen-
tary layer, up to 9 km, in the north compared to a ∼4 km sedimentary layer in the south. Our model (Figure 8a) 

Figure 8. (a) Sediment thickness, (b) Moho depth and (c) lithosphere and asthenosphere boundary depth maps. The red 
dashed lines delineate the range of main basins.
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also reveals 2–3 km thick sediments in the LP-SMB, the Chuxiong Basin (CXB), and some other smaller-scale 
basins. At such depths, high velocity anomalies are mainly distributed in the mountain ranges around the SCB, 
the Youjiang fold zone of the Cathaysia Block (CaB), the northern portion of the NCDB, and the inner zone of 
the ELIP in the South Chuan-Dian Block (SCDB).

At the middle and lower crust of 20–30 km depth (Figures 9c and 9d), the major velocity features are three discon-
nected LVZs located in the NCDB (A), the XJF and its eastern region (B), and the Tengchong volcanic zone (C), 
respectively. In particular, anomalies A and B are well separated by NE-SW trending high velocities, which extend 
all the way from the eastern SCB, cross the Anninghe Fault (ANHF) and terminate at the SCDB. The vertical cross 
sections in Figure 10 show the 3D distribution of the above-described features more clearly. Anomaly A exhibits the 
most significant velocity reductions in the crust (with absolute Vs < 3.3 km/s) and extends vertically at 10–45 km 
depths (profiles OA, OB, OC, and OD). This anomaly becomes less prominent when extending southward across 

Figure 9. Vs maps at different depths. The triangle denotes the Tengchong volcano zone. The black circles in (b)–(d) 
represent the locations of earthquakes with Ms > 4.0 occurred from 1970 to 2017.
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the Zhongdian Fault (ZDF), but it clearly terminates before reaching the Tengchong volcano (profile OA). To the 
east and southeast, the anomaly A is confined by the LXF and the Longmenshan Fault (LMSF), respectively, likely 
due to the obstruction of the high-velocity blocks at YC and the ELIP (profiles OB, OC, and OD). Compared to 
the relatively consistent depth range of the anomaly A, Profile EE’ shows that the anomaly B exhibits obvious 
north-south variations. In the north, the crust is thicker, and the LVZ is located at a deeper depth (below 25 km); 
while in the south, they are much shallower and are accompanied by more earthquakes at the southern edge.

Figure 10. Vertical profiles (OA-OD, EE’, and FF’) of our Vs model with their locations displayed in the plain maps of 
25 km depth on the top right. The vertical exaggeration of 0–65 km depth is 2.29 and that of 65–250 km depth is 1.07. 
The black circles represent the locations of earthquakes with Ms > 4.0 occurred from 1970 to 2017. The black dashed lines 
indicate the lithosphere and asthenosphere boundary along profiles.
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The velocity features at 40 km depth (Figure 9e) mostly reflect the variations of crustal thickness in the region 
(Figure 8b). At such depth, a broad region of low velocity (<4 km/s) is observed in the northwestern portion of 
the study area, representing the thicker crust compared to the surrounding regions. At 65 km depth in the upper-
most mantle (Figure 9f), the Tengchong volcanic zone and the ICB exhibit concentrated low velocities, while 
most of the northern YC and the SCDB show high velocities (>4.55 km/s). A narrow zone of concentrated low 
velocity is also observed along the XSHF, likely indicating its extension to the lithospheric scale. Our restoring 
resolution test indicates that the narrow low-velocity anomaly along the XSHF at this depth can be well recov-
ered. More details about this resolution test are included in Supporting Information (Text S1 and Figure S7 in 
Supporting Information S1).

Blow 65 km depth, the Tengchong volcanic zone shows the most significant velocity reduction across the region, 
and this low velocity seems to extend vertically to ∼100 km depth. At greater depths of 100–150 km (Figures 9g 
and 9h), a broad low velocity anomaly starts to emerge at regions south of 26°N with sporadic concentrated low 
velocities beneath the ICB and the CaB (profiles EE’ and FF’); while high velocity anomalies beneath the SCDB 
and the northern YC persist. These high velocities probably represent a thicker lithosphere in the region with 
estimated LAB depths at ∼150 km (profiles OB, OC, OD, and EE’), compared to a much thinner lithosphere 
(∼50 km) in the surrounding regions. However, significant high-velocity bodies tend to emerge beneath the Song-
pan-Ganzi Block (SGB) and the NCDB at depths >200 km (profiles OA, OB, OC, and OD), where our model 
resolution starts to deteriorate. To better show the relationship of the upper mantle features of our model with the 
deeper structures, we combine our velocity model covering 0–410 km depths with the full waveform inversion 
results of Tao et al. (2018) at 410–800 km depth range (Figure 11). This combined model reveals that the location 
of significant high velocities in the mantle transition zone (MTZ) coincides well with the upper mantle LVZs.

4. Discussion
4.1. Comparison With Previous Models

The eastern and southeastern margins of the Tibetan plateau have received numerous attentions from seismol-
ogists to characterize the underlying shear-wave velocity structures as well as the variations of sediment and 
crustal thickness (e.g., X. Bao, Sun, et al., 2015; M. Chen et al., 2014; Fu et al., 2017; Z. Huang et al., 2019; 
H. Li et al., 2009; M. Li et al., 2016; Q. Y. Liu et al., 2014; W. Shen et al., 2016; Y. Yang et al., 2012; Y. Yang 
et al., 2020; Yao et al., 2008; Z. Zhang et al., 2020). In general, our model exhibits similar first-order features to 
these existing models, such as the thick sedimentary layer in the SCB, extensive LVZs in the middle and lower 
crust of the NCDB and along the XJF, the high-velocity crust beneath YC, and significant low-velocity in the 
upper mantle beneath the ICB and the CaB. However, the inclusion of 653 stations from two dense arrays and 
the use of advanced joint inversion of broad period ranges of dispersion and body wave data result in unprece-
dented resolution of our new model, which reveals remarkable small-scale features that are not observed clearly 
in previous studies.

Since our model covers a broad depth range extending from the surface down to >250 km, we compare our model 
with others at two separate domains: the crust and the upper mantle depth, respectively. To better facilitate the 
model comparison, we obtain the digital form of several recently published models and replotted them on the 
same grid points using the same color scales (Figure 12 and Figure S8 in Supporting Information S1).

We first compare our crustal features with those of Y. Yang et al. (2020) and Y. Liu, Yao, et al. (2021) (Figure 12). 
Both models are recently published and focus on the crustal structures of SET through joint inversion of multiple 
datasets, but are constructed using different data sizes and types. For example, Y. Yang et al. (2020) use surface 
wave data (dispersion and H/V ratio) and P wave receiver function from 114 (permanent) stations in the region; 
while Y. Liu, Yao, et  al.  (2021) use surface wave dispersion data from 175 stations (124/175 are permanent 
stations) and body wave traveltime data of local earthquakes from 230 (permanent) stations. The least number of 
stations used in Y. Yang et al. (2020) among the three studies result in the smoothest features of their model in 
the  shallow crust, where Y. Yang et al. (2020) also show several anomalies different from the other two (10 km 
depth in Figure  12). For example, broad high velocities are observed on the eastern side of the ANHF and 
Zemuhe Fault (ZMHF), the ICB, and the southern YC, where finer-scale and more localized variations of veloc-
ities are revealed in the other two models. Y. Liu, Yao, et al. (2021) resolve small-scale features at a level similar 
to ours, though some discrepancies exist at local regions. For example, their model shows broad low velocities 
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in the NCDB, while our model suggests that the low velocities are only concentrated in a local area northwest of 
the LXF. In addition, their model shows significant low velocities in the CaB, which is the opposite in our model. 
These regions of large discrepancy have generally sparser station coverage in Y. Liu, Yao, et al. (2021), thus the 
related features may be not well resolved as demonstrated in their resolution tests. In the upper crust, another 
major difference of the models lies in the resolved sediment thickness in the SCB. Our model delineates a deeper 
basin structure (taking ∼2.7 km/s as the approximate bottom boundary) with up to 9 km sediments in the northern 
SCB, compared to the thinner (∼4–5 km) sporadic subbasins in the south (Figure 8). This feature is consistent 
with the sonic logs and seismic reflection profile results in the region (C. Y. Wang, Wu, et al., 2003; M. Wang 

Figure 11. Same as Figure 10, but velocity perturbation profiles at 0–800 km depth with 0.48 of vertical exaggeration.
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et al., 2016). Meanwhile, significant high velocities (∼3.4 km/s at 5 km depth) are observed in the central SCB 
beneath the thin sediments, corresponding well with the contractional anticlines having a high-velocity core of 
Precambrian metasedimentary and igneous rocks (M. Wang et al., 2016). However, Y. Yang et al. (2020) observes 
a smoother sedimentary basin with a broad thickness of ∼6–8 km, and Y. Liu, Yao, et al. (2021) does not resolve 
the sedimentary structure well due to the weak sensitivity of their data to the sedimentary layer.

The most pronounced differences of the three models appear in the mid-lower crust, where the distribution and 
connectivity of LVZs show strong variations (25 km depth in Figure 12). For example, Y. Yang et al.  (2020) 
and Y. Liu, Yao, et al. (2021) as well as many other previous studies (e.g., X. Bao, Sun, et al., 2015; Z. Zhang 
et al., 2020) all observe a laterally continuous LVZ extending from the NCDB to the Tengchong volcano, while 

Figure 12. Comparisons of our model (right column) with that of Y. Yang et al. (2020) (left column) and Y. Liu, Yao, 
et al. (2021) (middle column) in the crust depth.
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our model reveals two separated LVZs in the region. We further describe this feature and discuss its related 
implication in Section 4.2.

Next, we compare the upper mantle part of our model with those of W. Shen et  al.  (2016) and Z. Zhang 
et al. (2020) (Figure S8 in Supporting Information S1), who use similar period ranges of surface wave data as 
our study obtained from both ANT and teleseismic surface wave tomography. Compared to that in the crust, the 
velocity variations in the upper mantle are much smaller between the models. One of the main differences in the 
velocity features lies beneath the SCDB, where only our model shows local high velocities at the top of the upper 
mantle (above 110 km depth). However, a similar high-velocity anomaly is observed in the teleseismic body 
wave tomography model incorporating the same dense array in the region (Z. Huang et al., 2019). In addition, 
although all three models reveal some localized velocity reductions around the XSHF, our model delineates a 
LVZ more closely following the fault trend, suggesting its extension to the lithospheric scale (70 km depth in 
Figure S8 in Supporting Information S1). Compared to the other two models, our model shows more significant 
velocity reductions in the upper mantle beneath the NCDB and the SGB, which is consistent with the recent body 
wave tomography of Z. Huang et al. (2019). The three models exhibit considerable variations of velocity features 
beneath the Tengchong volcanic zone as well as the broad region south of 26°N, which are discussed further in 
Section 4.4.

4.2. Spatial Distribution of Crustal LVZs

A variety of geophysical observations suggest the existence of low viscous materials in the mid-lower crust of 
the SET. These geophysical features include particularly low shear-wave velocity (<3.4 km/s) (X. Bao, Sun, 
et al., 2015; Y. Yang et al., 2020; Yao et al., 2008; Z. Zhang et al., 2020), abnormally high electrical conduc-
tivity (Bai et al., 2010; X. Li et al., 2020), high heat flow (Hu et al., 2000), and strong attenuation (L.-F. Zhao 
et al., 2013). With the use of even more and denser data, our new model exhibits higher resolution across the 
broad area and reveals three independent low-velocity regions (A, B, and C) in the middle-lower crust of the SET 
(Figures 9c and 9d).

Anomaly A is one of the major features in the mid-lower crust depth of our model, which has been observed 
in many previous seismic models (e.g., X. Bao, Sun, et al., 2015; Z. Zhang et al., 2020). However, compared to 
previous studies, our model shows more enhanced velocity reductions at 20–40 km depths with the absolute Vs at 
the core region lower than 3.25 km/s. In addition, our model shows that this anomaly is clearly confined by the 
large-scale fault systems of LXF and LMSF (P. Z. Zhang, 2013) to the southeast and east. Y. Yang et al. (2012) 
argues that an absolute Vs below 3.4 km/s at such depths is very difficult to explain without the presence of melts. 
Supported by other geophysical signatures described above, this LVZ is often interpreted as a mechanically weak 
layer that could flow in a geological time scale. However, since these geophysical models only represent the 
current in situ measurements, and the crust beneath this region is thick today (Figure 8b), it is difficult to infer 
whether this LVZ is formed from crustal thickening due to other reasons, for example, radiogenic heating from 
early growth after the Indian-Tibetan plate collision (McKenzie & Priestley, 2008), or a result of channelized flow 
that has thickened or is thickening (parts of) the crust.

Seismic anisotropic signatures (H. Chen et  al.,  2016; H. Huang et  al.,  2010; Y. Liu, Li, et  al.,  2021; Sun 
et al., 2012; Xie et al., 2013, 2017; Yao et al., 2010), whose formation is directly linked to past deformation, show 
azimuthal anisotropy of fast axes sub-parallel to the strikes of the LVZ and strong positive radial anisotropy at the 
depths corresponding to the LVZ. The anisotropy is interpreted as a result of horizontal flow of a mechanically 
weak layer with mica-bearing compositions. In this case, the anomaly A could represent a remanent of previous 
channels that could be still active. Indeed, large scale Vs models covering the entire eastern Tibetan Plateau  
(Y. Yang et al., 2012; Yao et al., 2010) reveal several LVZs of similar amplitude in the central Tibetan Plateau, with 
which the anomaly A seems to be weakly connected, suggesting its possible initiation from the central Tibetan 
Plateau. More recently, the high-resolution azimuthal anisotropy model from X. Bao et al. (2020) observes weak 
azimuthal anisotropy around the anomaly A, and they argue that this channel flow might be strong but have to be 
disordered to form the relatively weak anisotropy averaged at ∼200 km scales. This could be the case consider-
ing crustal thickening process might be heterogenous and achieved soon after the Indo-Asian collision based on 
paleoaltimetry studies (e.g., S. Li et al., 2015). However, the weak azimuthal anisotropy could still be a result of 
channelized flow in the mid crust, where mica-bearing rocks (of hexagonal geometry) align horizontally due to 
the shearing and form strong radial anisotropy but weak azimuthal anisotropy simultaneously. In any case, the 
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local crustal LVZ we imaged around the NCDB could still be transported to the surrounding topographic lows 
driven by lateral gravity gradient.

The confinement of anomaly A by the several large-scale strike-slip faults is a very interesting feature. GPS meas-
urements indicate significant sinistral shortening occurring along the LXF on the surface (Hao et al., 2016; P. Z. 
Zhang, 2013), suggesting strong localized deformation (X. Bao et al., 2020; Q. Y. Liu et al., 2014). The LAB 
variations and Vs model derived from our model suggest relatively fast and thick lithosphere to east of the LXF. In 
particular, the high velocity anomaly beneath the inner ELIP is associated with high Poisson's ratio, strong nega-
tive radial anisotropy, and high density, which are all interpreted to be related to the upwelling and underplating 
of the mantle plume (Y. Chen et al., 2015; Y. Deng et al., 2016; Y. Liu, Li, et al., 2021; W. Wang et al., 2017;  
Y. Yang et al., 2020). And the weak azimuthal anisotropy within the inner ELIP suggests that it is less deformed 
by the compression of the Tibetan Plateau and may act as a rigid barrier to the southeastward flow of crustal 
low-viscous materials from the plateau (Han et al., 2022; Z. Huang et al., 2018). In this case, the strong conver-
gence at the shallow crust might decouple the mid-lower crust with the lithospheric mantle, creating shear heating 
that further enhance the LVZs, as suggested by Q. Y. Liu et al. (2014). X. Bao et al. (2020) propose that the shear 
heating due to strike-slip faulting along the Litang fault could also contribute to this LVZ. However, this effect 
might be minor considering the LVZ extending to a much broader region beyond the extent of the fault.

To the south of the anomaly A, we observe a much thinner, less prominent and finger-like low velocity feature, 
which extends across the ZDF and penetrates into the mid crust of the neighboring block (profile OA in Figure 10). 
This feature might represent the current active crustal flow initiated from the anomaly A, driven by the positive 
topographic gradient from north to the south. This interpretation is further consistent with the N-S anisotropic 
fast-axis orientation in the southern part of the NCDB (X. Bao et al., 2020; Han et al., 2020). In summary, we 
think the current anomaly A probably represents a remanent or still active channelized flow that could have been 
initiated from the central Tibetan Plateau, which have helped thicken the crust in the region. The strong shorten-
ing along the LXF on the shallow crust decouples the mid-lower crust and creates shear heating during this time, 
further enhancing the LVZ. Driving by the topographic gradient, this LVZ continues to flow southward, beyond 
the ZDF, representing the latest episode of crustal flow in the region.

After crossing the ZDF, anomaly A extends slightly further to the south with diminished velocity reduction 
and terminates well before reaching the front of the Tengchong volcanic zone (anomaly C). This novel feature 
is different from previous studies (e.g., X. Bao, Sun, et al., 2015; Y. Liu, Yao, et al., 2021; Y. Yang et al., 2020; 
Z. Zhang et al., 2020) that observe continuous low velocity extending all the way from the NCDB to the Teng-
chong volcanic zone. It means that the extrusion of low-viscous material from the high altitudes of the plateau 
is very limited and that there may not be widespread crustal flow in the southeastern Tibetan Plateau. Even 
though this feature is on the edge of the study area, the many stations located around it provide extremely dense 
ray coverage across the region (Figure S1 in Supporting Information S1) and the checkerboard resolution tests 
for ANT at periods of 8–30 s show that anomalies smaller than 0.5° × 0.5° in size can be well recovered in this 
edge region (Figure S2 in Supporting Information S1), further demonstrating the reliability of this feature. The 
isolated crustal LVZ of C, mostly beneath the Tengchong volcanic zone, likely indicates a separate magma 
reservoir in the mid-lower crust that could be sourced from the deeper reservoir in the top of upper mantle  
(Y. Zhao et al., 2021), where significant velocity reductions present in our model. Both petrological and geochem-
ical signatures of volcanic rocks and melt inclusions around the Tengchong volcano indicate their origin from 
melting of an enriched mantle (F. Chen et al., 2002; Duan et al., 2019; Zhou et al., 2012). In addition, hydrother-
mal fluids collected around the Tengchong volcano show high  3He/ 4He values, which signatures indicate deeply 
sourced mantle volatile emissions (M. Zhang et al., 2021).

4.3. A Separated LVZ Beneath the XJF

Apart from the separated LVZs beneath the NCDB and Tengchong volcano, we also observe an isolated LVZ 
further east of SET beneath the XJF region. This anomaly B has been imaged in many previous studies (e.g.,  
X. Bao, Sun, et al., 2015; Qiao et al., 2018; Z. Zhang et al., 2020). However, different models have led to different 
interpretations on the origin of this LVZ. For example, X. Bao, Sun, et al. (2015) observe that anomaly B turns 
southwest after crossing the RRF, which is consistent with the clockwise rotation of crustal motion around the 
EHS. They further propose its origin from the combined effects of crustal flow and strike-slip faulting in the 
region. Qiao et al. (2018) and Z. Zhang et al. (2020) showed that the crustal LVZ spreads from north to south and 

 21699356, 2023, 7, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JB

026162 by R
ice U

niversity, W
iley O

nline L
ibrary on [21/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Solid Earth

YANG ET AL.

10.1029/2022JB026162

19 of 25

extends across the RRF into northern Vietnam. Considering the late Paleogene alkaline magmatism and many 
active faults in Yunnan and northern Vietnam, they suggest that it probably originates from shear heating due 
to strike-slip faulting or upwelling of the asthenosphere. However, the NE-SW anisotropic fast-axis orientation 
revealed by the recent azimuthal anisotropy study suggests that the deformation of this LVZ may be related to the 
southeastward plateau expansion (Han et al., 2022). They propose that tectonic stress from the Tibetan Plateau 
extrusion has been transferred to the area near the XJF through the SCDB, leading to horizontal crustal shorten-
ing and thickening under the NW-SE compression. The ongoing NE-SW surface uplift in the region is supported 
by GPS measurements (Pan & Shen, 2017). Our new high-resolution results provide further support to this spec-
ulation. First, different from past imaging results, our model shows that the anomaly B does not cross the RRF, 
but is instead confined by the CaB, the ICB and the high-velocity block in the inner zone of the ELIP. Second, 
the overall NE-SW trend of this LVZ is inconsistent with the N-S trend of the XJF, especially in its northern part, 
where the LVZ is mainly located east of the XJF. The low Poisson's ratio in the region suggests that the crust 
may be dominated by felsic materials, which is more susceptible to partial melting from radioactive self-heating 
(Beaumont et al., 2004; L. Chen et al., 2019; McKenzie & Priestley, 2008), once a thickened crust is formed from 
the shortening (W. Wang et al., 2017; Z. Zhang et al., 2020).

Our model reveals several other interesting and new characteristics regarding the anomaly B. First, our model 
indicates the northern portion of the LVZ appears at slightly deeper depths (profile EE’ in Figure  10). The 
significantly thick lithosphere beneath the northern portion of anomaly B probably excludes its origin from local 
upper mantle upwelling. Instead, the deeper crust might create a local condition of higher temperature, favorable 
for the in situ partial melting. In the southern part of the LVZ, the low velocities occur at a distinguishable shal-
lower depth (Figure 9b; profile EE’ in Figure 10). Our model also shows significant low-velocity anomalies in 
the uppermost mantle as well as a thin lithosphere, consistent with most previous surface wave imaging studies 
(e.g., X. Bao, Song, & Li, 2015; W. Shen et al., 2016; Z. Zhang et al., 2020). This suggests the possible existence 
of crust-mantle material interactions. Y. Zhao et al. (2020) suggest that the origin of this LVZ is related to the 
localized mantle upwelling. The recent magnetotulleric sounding in the region also suggests that thermal fluids 
from the mantle may be upwelling along deep faults (X. Li, Bai, et al., 2019). Our model further shows that the 
south part of the XJF may be the main channel for the upwelling of mantle material to the crust (profile EE’ 
in Figure 10), making it indeed a possible origin of the crustal LVZ. On the other hand, the mantle upwelling 
might only provide the heat source required for crustal weakening, making it occur at shallower mid-crust depths 
compared to the northern portion. In addition, we notice significant changes in crustal thickness between the 
northern and southern sides of this LVZ (B), reducing from 50 km in the north to 40 km in the south (Figure 8b). 
A similar feature has been observed in some receiver function studies that focus more on Moho variations of the 
region (e.g., W. Wang et al., 2017). Meanwhile, the paleoaltimetry study reveals the late Miocene surface uplift 
at the southern XJF (S. Li et al., 2015). The thinner crust and surface uplift in the south may be related to the 
asthenosphere upwelling in the late Miocene, which is associated with subduction and retreat of the Indian plate 
(e.g., X. Bao et al., 2020; Richards et al., 2007).

We note a series of earthquakes are concentrated in the southern part of the LVZ and are mainly located along fault 
zones. The development of low-viscosity material may facilitate the strike-slip of faults and help to release the 
stress, thus contributing to the occurrence of earthquake clusters around the LVZs in the region. The low-viscosity 
material may also migrate upward along the local fault system, as revealed by the geomagnetic results of X. Li, 
Bai, et al. (2019). Meanwhile, the shear heating produced by the strike-slip faulting may also contribute to the 
formation of the LVZ (X. Bao et al., 2020; Leloup et al., 1999).

Therefore, we attribute the anomaly B mainly to partial melting caused by crustal thickening during the plateau 
expansion, while its different geometry in the southern part may be a combined result of crustal thickening, 
mantle upwelling, and shear heating of strike-slip faults.

4.4. Origin of Upper Mantle Upwelling

Previous studies have identified large-scale low-velocity anomalies in the upper mantle over the broad SET 
region. However, the origin of the low velocity anomalies is still controversial with potential mechanisms includ-
ing the extrusion of asthenosphere from the Tibetan Plateau (Z. Huang et al., 2015; Z. Huang et al., 2019), dehy-
dration of the subducted Indian plate (Lei & Zhao, 2016; Lei et al., 2019), mantle upwelling associated with plate 
breakup (Tian et al., 2018; R. Zhang, Wu, et al., 2017), and the delamination of thickened lithosphere caused by 
the India-Eurasia collision (Feng et al., 2022; Z. Huang et al., 2019). Our new seismic models combined with 
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other geophysical and geochemical data provide new insights into exploring the origin of the upper mantle LVZs 
beneath the SET.

In our model (Figures 9f–9h), the upper mantle of the NCDB and the SGB (in the northwestern part of our study 
area) at depths shallower than 150 km exhibit sporadic low velocities of moderate amplitude (∼4.3 km/s). This 
contrasts with previous body wave tomography results showing widespread low velocities (−2%) around the YC 
(e.g., Z. Huang et al., 2015; Lei & Zhao, 2016), which are interpreted as extruded asthenosphere material from the 
Tibetan Plateau. Interestingly, our model shows a significant high-velocity body at 200–250 km depth right beneath 
the low velocity (profile OA, OB, OC, and OD in Figure 10), and a similar high velocity feature is also observed 
in the previous body wave tomography of Z. Huang et al. (2019). They interpret this high velocity anomaly as the 
delaminated lithosphere, which could have induced a potentially localized mantle upwelling (Houseman et al., 1981; 
Schott & Schmeling, 1998), contributing to the sporadic low velocities in the upper mantle observed in our model. 
Assuming this delamination explanation is true, we try to estimate its initiation time. Due to the lack of direct 
constraints on the sinking rate of cold lithosphere in the upper mantle, we use indirect constraints for the region. 
For the lower bound, we use the average sinking rate of the delaminated continental lithosphere below the MTZ for 
this region (∼2 cm/yr; Feng et al., 2022) considering the much larger viscosity of the lower mantle compared to the 
upper mantle. For the upper bound, we use the free sinking rate of the oceanic slab in the upper mantle (∼3–5 cm/yr; 
Hafkenscheid et al., 2006; Replumaz et al., 2004), since oceanic slabs typically have higher density than the conti-
nental lithosphere. This gives us a range of 2–3 cm/yr for the sinking rate of the cold lithosphere in the upper mantle, 
which indicates a time span of ∼6–10 Myr for ∼200 km downwelling on the first order. We note this rough time 
estimate coincident with the initiation of the activity of XSHF at ∼9 Ma ago (Y. Z. Zhang, Replumaz, et al., 2017). 
Previous studies suggest compressional thickening of the lithosphere and subsequent delamination may lead to the 
activation of strike-slip faults (Feng et al., 2022; W. Wang et al., 2021), which is consistent with our speculation.

Several lines of evidence exist to support the lithospheric thickening and delamination process in the region after 
the Indo-Asian collision. First, palaeoaltimetric studies suggest that the eastern plateau reached its approximate 
current elevation by the late Eocene (Hoke et al., 2014; S. Li et al., 2015), when the lithosphere of the Tibetan 
Plateau may have thickened significantly. Second, the estimated lithospheric delamination time corresponds well 
to a change in the Indo-Asian convergence angle (Feng et al., 2022). Based on a plate motion reconstruction 
model from T.-Y. Lee and Lawver (1995), a notable shift in the convergence direction switching from ∼N30°E 
to below ∼N20°E occurs at ∼10 Ma. This change of subduction angle may be related to the decrease of resistant 
force of the eastern plateau after the lithospheric delamination. In addition, the uplift of the Gongga Mountains, 
the intrusion of Late Miocene granites and the activity of XSHF during this time are all suggested to be related to 
the lithospheric delamination (H. Li & Zhang, 2013; Y. Z. Zhang, Replumaz, et al., 2017; W. Wang et al., 2021). 
Indeed, one recent geochemical study (M. Zhang et al., 2021) identifies high mantle-source volatiles along the 
fault zone, arguing the important role XSHF played on the lithospheric scale deformation. Our model reveals 
significant low velocities along the XSHF at 65 km depth (Figure 9f), which might represent localized upwelling 
mantle materials that are still actively migrating along the fault zone. This further supports the possible delami-
nation process in the northern part of the region beneath the NCDB and SGB.

Different from the sporadic low velocity in the north, the region south of 26°N shows a broad low velocity area in 
the upper mantle (65–150 km) with some particularly concentrated velocity reductions. For example, at 65 km depth 
(Figure 9f), the most significant velocity reduction concentrates beneath the Tengchong volcanic zone. These regions 
host a large amount of Cenozoic magmatism, highlighting their connection with upper mantle dynamic processes (J. 
Deng et al., 2014; Guo et al., 2005; C. Z. Liu et al., 2013; J. H. Wang, Yin, et al., 2001). In particular, geochrono-
logical data indicates two main phases of Cenozoic magmatism in the eastern Indo-Asian collisional zone, one from 
the Middle Eocene to the Early Oligocene (42–24 Ma) and the other after the Late Miocene (<16 Ma) (J. H. Wang, 
Yin, et al., 2001). The early potassic magmatism is mainly distributed in a 200 km wide zone across the RRF south 
of 26°N, which is suggested to be triggered by the delamination of the thickened lithosphere according to some 
geochemical evidence (B. Chen et al., 2017; Lu et al., 2015). The thinner lithosphere in the broad region south of 26°N 
in our model generally supports this scenario. In addition, one recent seismic study reveals high-velocity anomalies 
in the MTZ (Figure 11), which is interpreted as the delaminated lithosphere (Feng et al., 2022). The widespread low 
velocities in the upper mantle south of 26°N correspond well with the locations of the observed sinking lithosphere 
(profile EE’ and FF’ in Figure 11), indicating the close relationship between the lithospheric thickening and related 
delamination from continental collision and the early Cenozoic magmatism. We note that parts of the high-velocity 
anomalies in the MTZ occur at the north of 26°N (profile EE’), where the upper mantle low velocity is absent. Feng 
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et al.  (2022) suggest that the shallow lithosphere within the study region might have moved southward after the 
lithospheric delamination, and this plate motion is still ongoing as indicated by the GPS observations. Therefore, 
the shallow thinned lithosphere and the deep delaminated lithosphere could have been situated in different locations.

The late potassic magmatism is mainly distributed around the Tengchong volcano, the LP-SMB and the south-
ern part of the RRF (J. Deng et al., 2014; Guo et al., 2015), which is broadly coincident with the LVZ in the 
uppermost mantle (e.g., 65 km) in our model (Figure 9f). This LVZ may be caused by the upwelling of wet and 
hot asthenosphere material associated with the dehydration of the stagnant Indian slab in the MTZ (Z. Huang 
et al., 2019; Lei & Zhao, 2016) or the mantle flow related to the slab rollback (Rao & Kalpna, 2005; Sternai 
et al., 2014). However, our model loses resolution at depths deeper than 250 km, making it difficult to decipher its 
origin. Nevertheless, both mechanisms are closely related to the eastward subduction of the Indian plate. The joint 
inversion of teleseismic body wave traveltime data with the surface wave data might provide more information on 
the origin of this mantle upwelling and will be the subject of our future work.

5. Conclusion
In this study, we construct a high-resolution 3D S-wave velocity model of the crust and upper mantle beneath the 
broad SET region through jointly inverting Rayleigh wave phase velocities and teleseismic body-wave data. The 
dense and large-scale station coverage and the complementary sensitivity of surface wave and body wave to the 
velocity and interface structures allow us to reveal finer seismic structures in this region than previous studies.

We identify three isolated low-velocity regions in the mid-lower crust that might represent mechanically weak 
zones, different from connected features of these LVZs observed previously. The LVZ from the Tibetan Plateau is 
confined to the west of the LXF and crosses the ZDF to the south. However, it terminates well before reaching the 
Tengchong volcano, where an independent LVZ exists in the mid-lower crust. The LVZ around the XJF is clearly 
separated from the one beneath the Tibetan Plateau by high-velocity blocks beneath the YC and the ELIP. This 
low-velocity region is restricted to the north of the RRF, and is likely associated with the crustal thickening under 
the southeastward plateau expansion, mantle upwelling, and shear heating of strike-slip faults.

In the upper mantle, the local low-velocity anomalies in the NCDB and the SGB may reveal mantle upwelling related 
to lithospheric delamination, probably due to the compressional thickening of lithospheric material extrusion from 
the Tibetan Plateau. In the south of our study area, where two major phases of Cenozoic magmatism occurred in  the 
past, we suggest two phases of tectonic events to form the low-velocity upper mantle. The first phase is the early 
Cenozoic lithospheric delamination caused by continental collision and thickening, which occurs over a wide area 
south of 26°N. The second phase may be related to the subduction of the Indian plate under the Burma arc, resulting 
in some localized upper mantle upwelling, forming concentrated low velocities beneath the Tengchong volcano.

Appendix A: Interpolation-Based Inversion Method
We perform the interpolation-based inversion method of Niu et al. (2007) to get smoother interfaces from all 
measurements. We solved the damped least squares problem to minimize the misfit function,

||𝐺𝐺𝐺𝐺 − 𝑑𝑑||
2 + 𝜆𝜆

2
||𝐿𝐿𝐺𝐺||

2
, 

where m is the unknown parameters at all grid nodes, d is the measurements at all stations, G is the kernel matrix 
with the none zero elements corresponding to the measurements, L is the finite difference operator for the first 
derivative of the model, and λ is the regularization parameter. We select λ that minimize the misfit function and 
satisfy the following condition:

∑ (𝐺𝐺𝐺𝐺 − 𝑑𝑑)2

𝜎𝜎2
= 1. 

σ is the uncertainty of measurements, which is the standard deviation of the posterior distribution in the inversion.

Data Availability Statement
Seismic data of western Sichuan and ChinArray-Himalaya Phase I are from China Seismic Array Data Manage-
ment Center at Institute of Geophysics, CEA (China Earthquake Administration) (ChinArray DMC, http://
doi.org/10.17616/R31NJMMK), which can be accessed from http://www.chinarraydmc.cn/. The ambient 
noise cross-correlations, teleseismic surface wave waveforms, teleseismic body wave waveforms, and phase 
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velocity dispersion data used in this study are available from the data repository (https://doi.org/10.6084/
m9.figshare.21646931.v1). The final 3D Vs model are archived and available from the data repository (https://
doi.org/10.6084/m9.figshare.21586215.v1).
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